ON A GENERALIZATION OF PERFECT b-MATCHING

LUBICA ŠÁNDOROVÁ, MARIÁN TRENKLER, KOŠICE
(Received October 23, 1989)

Summary. The paper is concerned with the existence of non-negative or positive solutions to $Af = \beta$, where A is the vertex-edge incidence matrix of an undirected graph. The paper gives necessary and sufficient conditions for the existence of such a solution.

Keywords: β -non-negative and β -positive graphs, perfect b-matching, system of linear equations. AMS classification: 68E10, 05C50.

1. INTRODUCTION AND DEFINITIONS

Let G = [V(G), E(G)] be a connected non-directed graph without loops or multiple edges with n vertices denoted by $v_1, v_2, ..., v_n$, and let $\beta = (b_1, b_2, ..., b_n)$ be an n-dimensional vector of positive real numbers. The graph G is called β -non-negative or β -positive if there exists a non-negative or positive solution f to the system of linear equations

$$\sum_{e \in E(G)} \eta(v_i, e) \cdot f(e) = b_i \quad \text{for} \quad i = 1, 2, ..., n,$$

where $\eta(v_i, e) = 1$ when the vertex v_i and the edge e are incident or 0 otherwise. In other terms, if there exist non-negative or positive edge labels such that the sum of labels incident to v_i is b_i for all $1 \le i \le n$.

The solution f is called a β -non-negative or β -positive labelling of G with the indexing vector β . We use this terminology in accordance with [6], where another characterization of β -positive graphs was given.

If we consider the vector β and the solution of non-negative integers our problem coincides with the problem known as perfect b-matchings (see the book [5, p. 271]).

In the special case when β is a stationary vector of integers, the β -positive graph has been called a regularisable graph in Berge's paper [1] (see also [5, p. 218]), or a semimagic graph in [2], [3] and [7].

The aim of this paper is to characterize all vectors β for which the given graph G is β -non-negative or β -positive, respectively. Tutte's characterization of perfect 2-matching graphs [5, p. 216] is a particular case of our Theorem 1.

We use the terminology of Grünbaum's book [4]. Under an elementary vector ε_{ij}

assigned to the edge (v_i, v_j) we understand an *n*-dimensional vector with the *i*-th and *j*-th coordinates equal to 1 and all others equal to 0. The set of all elementary vectors assigned to edges of E(G) will be denoted by \mathscr{A}_G . We say that the subset of E(G) is linearly independent if the set of assignment vectors is linearly independent. The edges of a factor F of G are linearly independent iff every connected component of F is a tree or has exactly one odd circuit. By the symbol \mathscr{K}_G we denote the set of all admissible indexing vectors of the given graph G. Evidently, every vector of \mathscr{K}_G is a linear combination of vectors of \mathscr{A}_G with non-negative coefficients. This yields

Lemma 1. \mathcal{K}_G is a cone generated by vectors of \mathcal{A}_G with the apex (0, 0, ..., 0).

2. RESULTS CONCERNING THE CONE \mathscr{K}_G

Lemma 2. The dimension of \mathcal{K}_G is n if G is a non-bipartite graph and n-1 if G is a bipartite graph.

Lemma 2 is similar to Theorem 1 of [3].

In view of Theorem 1 of [4, p. 31] and [5, p. 256] the following assertion is true:

Lemma 3. If G is a non-bipartite graph, then \mathcal{K}_G is the intersection of a finite family \mathcal{H} of closed halfspaces.

Let $H_1, H_2, ..., H_k$ be the boundaries of halfspaces of \mathscr{H} . Each of these hyperplanes is determined by the origin and n-1 linearly independent vectors of \mathscr{A}_G . We denote by δ_i the normal vector of the hyperplane H_i , i=1,2,...,k. Without loss of generality, we assume that for every index i, δ_i is a normal vector such that its first non-zero coordinate is 1 or -1 and for all $\beta \in \mathscr{K}_G$ the scalar product $\langle \beta, \delta_i \rangle$ is non-positive. By the symbol \mathscr{D} we denote the set $\{\delta_1, \delta_2, ..., \delta_k\}$ of all normal vectors considered.

Corollary 1. \mathcal{K}_G is the set of all n-dimensional vectors β such that $\langle \beta \, . \, \delta_i \rangle \leq 0$ for $i=1,2,\ldots,k$.

3. THE STRUCTURE OF VECTORS OF @

Let H be a hyperplane of an arbitrary halfspace of \mathcal{H} and let $\delta = (d_1, d_2, ..., d_n) \in \mathcal{D}$ be its normal vector.

We divide the vertices of G into three sets:

if $d_i > 0$ then $v_i \in S_1^{\delta}$,

if $d_i < 0$ then $v_i \in S_{-1}^{\delta}$, and

if $d_i = 0$ then $v_i \in S_0^{\delta}$.

By G^{δ} we denote the factor of G consisting of all edges assigned to the elementary

vectors forming the hyperplane H. The edges of the factor G^{δ} are linearly independent. Since the cardinality of $E(G^{\delta})$ is n-1, therefore exactly one component of G^{δ} is a tree T and each other component contains one odd circuit C.

Let M be a component of G^{δ} having one odd circuit C. The relation $\langle \delta : \varepsilon_{ij} \rangle = 0$ holds for all edges $(v_i, v_j) \in E(M)$ only if every vertex of the circuit C belongs to S_0^{δ} , and consequently every vertex of the component M belongs to S_0^{δ} , too. The non-zero coordinates of δ are associated only to vertices of T.

Lemma 4. If the edge $e = (v_i, v_j) \in E(G^{\delta})$ and the vertex $v_i \in S_1^{\delta}$, then $v_j \in S_{-1}^{\delta}$. The proof follows from the fact that if the edge $(v_i, v_j) \in E(G)$, then the assigned elementary vector $\varepsilon_{ij} \in \mathcal{K}_G$ and so $\langle \varepsilon_{i,j} \cdot \delta \rangle = d_i + d_j \leq 0$.

Lemma 5. The coordinates of the vector δ are 1 or -1 or 0.

Proof. The first non-zero coordinate of δ , $d_i=1$ or -1 corresponds to the vertex v_i which belongs to the component T of G^δ which is a tree. We have $\langle \varepsilon_{ij} \cdot \delta \rangle = 0$ for all edges of E(T) and consequently, if the coordinate $d_i=-1$, then $d_j=1$ or if $d_i=1$, then $d_j=-1$. So all vertices of T can be divided into two independent sets V_1 and V_2 such that if $d_i=1$ then $v_i \in V_1$ and if $d_i=-1$ then $v_i \in V_2$.

Corollary 2. The set S_1^{δ} is independent in V(G) and the set of the neighbour vertices $\Gamma(S_1)$ is equal to the set S_{-1}^{δ} .

4. CHARACTERIZATION OF β-NON-NEGATIVE GRAPHS

Theorem 1. Let G be a connected graph with n vertices $v_1, v_2, ..., v_n$ and let $\beta = (b_1, b_2, ..., b_n)$ be a vector of non-negative numbers. The graph G is β -non-negative if and only if

(1)
$$\sum_{v_j \in S} b_i \leq \sum_{v_j \in I(S)} b_j \quad \text{for all independent} \quad S \neq \emptyset \quad \text{of} \quad G.$$

Proof. Since no two vertices of S are joined by an edge the necessity of condition (1) is evident.

Let G be a non-bipartite graph. The set S_1^{δ} is independent in V(G) and $S_{-1}^{\delta} = \Gamma(S_1^{\delta})$ and so the scalar product $\langle \beta \rangle$ satisfies

$$\langle \beta \, . \, \delta \rangle = \sum_{v_i \in S_1^{\delta}} b_i - \sum_{v_j \in \Gamma(S_1^{\delta})} b_j \le 0$$

for all vectors of \mathcal{D} , i.e. the vector $\beta \in \mathcal{K}_G$.

Let G be a bipartite graph with the partition V_1 , V_2 of the vertex set V(G) and let $|V(G)| \ge 3$ (otherwise it is trivial). Then (1) implies

(2)
$$\sum_{v_i \in V_1} b_i = \sum_{v_j \in V_2} b_j.$$

Now we form a non-bipartite graph G' by adding to edges of G one new edge connecting two vertices v_i and v_j of V_1 . The graph G' has a β -labelling f. Evidently $f(v_i, v_j) = 0$ and so f is a β -non-negative labelling of G.

5. CHARACTERIZATION OF β -POSITIVE GRAPHS

Using the previous Lemmas and Corollaries and Theorem 1 it is easy to prove our main results.

Theorem 2. Let G be a non-bipartite connected graph with n vertices $v_1, v_2, ..., v_n$ and let $\beta = (b_1, b_2, ..., b_n)$ be a vector of positive real numbers. The graph G is β -positive if and only if

(3)
$$\sum_{v_i \in S} b_i < \sum_{v_j \in \Gamma(S)} b_j \text{ for all independent } S \neq \emptyset \text{ of } G.$$

Proof. For every independent S there exists at least one edge joining some vertex of $\Gamma(S)$ with a vertex $v \notin S$. Therefrom the necessity of (3) follows.

We define a new vector β' with the coordinates $b'_i = b_i - \mu \deg(v_i)$, i = 1, 2, ..., n, where

$$\mu = \frac{1}{2} \min \left\{ \sum_{v_i \in \Gamma(S)} b_j - \sum_{v_i \in S} b_i : S \neq \emptyset \text{ is an independent subset of } V(G) \right\}.$$

Theorem 1 implies that G is a β -non-negative graph with the labelling f'. So G is a β -positive graph with a labelling f such that $f(e) = f'(e) + \mu$ for all edges.

Theorem 3. Let G be a bipartite graph with a partition V_1 , V_2 having n vertices, and let $\beta = (b_1, b_2, ..., b_n)$ be a vector of positive real numbers. The graph G is β -positive if and only if

$$(4) \qquad \sum_{v_i \in V_1} b_i = \sum_{v_i \in V_2} b_j$$

and

(5)
$$\sum_{v_i \in S} b_i < \sum_{v_i \in \Gamma(S)} b_j \text{ for all independent } S \neq \emptyset, V_1, V_2.$$

References

- [1] C. Berge: Regularisable Graphs II. Discrete Math. 23 (1978), 91–95.
- [2] S. Jezný, M. Trenkler: Characterization of Magic Graphs. Czech. Math. J. 33 (1983), 435-438.
- [3] R. H. Jeurissen: The Incidence Matrix and Labellings of a Graph. J. Comb. Theory B 30 (1981), 290-301.
- [4] B. Grünbaum: Convex Polytopes. Interscience, London 1967.
- [5] L. Lovász, M. D. Plummer: Matching Theory. Akadémiai kiadó, Budapest 1986.
- [6] L. Šándorová, M. Trenkler: On a Generalization of Magic Graphs. Proc. of the 7th Hungarian Colloquium on Combinatorics, North Holland, 1988, 447-452.
- [7] B. M. Stewart: Magic Graphs. Canad. J. Math. 18 (1966), 1031-1059.

Súhrn

O ZOVŠEOBECNENÍ ÚPLNÉHO b-SPÁRENIA

Lubica Šándorová, Marián Trenkler

Práca sa zaoberá existenciou nezáporných, resp. kladných riešení systému lineárnych rovníc $Af = \beta$, kde A je vrcholovo-hranová incidenčná matica neorientovaného grafu a β n-rozmerný vektor z reálnych čísel. V práci sú uvedené nutné a postačujúce podmienky pre existenciu takýchto riešení.

Author's address: Department of Mathematics, P. J. Šafárik University, Jesenná 5, 041 54 Košice.